{ "id": "2103.09737", "version": "v1", "published": "2021-03-17T15:48:45.000Z", "updated": "2021-03-17T15:48:45.000Z", "title": "Scalar curvature, mean curvature and harmonic maps to the circle", "authors": [ "Xiaoxiang Chai", "Inkang Kim" ], "comment": "13 pages, 1 figure; comments welcome", "categories": [ "math.DG", "gr-qc", "math.AP", "math.GT" ], "abstract": "We study harmonic maps from a 3-manifold with boundary to $\\mathbb{S}^1$ and prove a special case of dihedral rigidity of three dimensional cubes whose dihedral angles are $\\pi / 2$. Furthermore we give some applications to mapping torus hyperbolic 3-manifolds.", "revisions": [ { "version": "v1", "updated": "2021-03-17T15:48:45.000Z" } ], "analyses": { "subjects": [ "53C43", "53C21", "53C25" ], "keywords": [ "mean curvature", "scalar curvature", "study harmonic maps", "special case", "dihedral rigidity" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }