{ "id": "2103.09698", "version": "v1", "published": "2021-03-17T14:49:01.000Z", "updated": "2021-03-17T14:49:01.000Z", "title": "On the orthogonality of generalized eigenspaces for the Ornstein--Uhlenbeck operator", "authors": [ "Valentina Casarino", "Paolo Ciatti", "Peter Sjögren" ], "comment": "10 pages", "categories": [ "math.FA" ], "abstract": "We study the orthogonality of the generalized eigenspaces of an Ornstein--Uhlenbeck operator $\\mathcal L$ in $\\mathbb{R}^N$, with drift given by a real matrix $B$ whose eigenvalues have negative real parts. If $B$ has only one eigenvalue, we prove that any two distinct generalized eigenspaces of $\\mathcal L$ are orthogonal with respect to the invariant Gaussian measure. Then we show by means of two examples that if $B$ admits distinct eigenvalues, the generalized eigenspaces of $\\mathcal L$ may or may not be orthogonal.", "revisions": [ { "version": "v1", "updated": "2021-03-17T14:49:01.000Z" } ], "analyses": { "subjects": [ "15A18", "47A70", "47D03" ], "keywords": [ "ornstein-uhlenbeck operator", "orthogonality", "admits distinct eigenvalues", "invariant gaussian measure", "real matrix" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }