{ "id": "2103.08320", "version": "v1", "published": "2021-03-15T12:14:59.000Z", "updated": "2021-03-15T12:14:59.000Z", "title": "A note on non-inner automorphism conjecture", "authors": [ "P. Komma" ], "comment": "A first draft", "categories": [ "math.GR" ], "abstract": "In this paper we prove that for $p\\ge 5$, every $2$-generator finite $p$-group $G$ has a non-inner automorphism of order $p$ leaving $G^p\\gamma_4(G)$ elementwise fixed. As a consequence we have the same result for finite $p$-groups of coclass $4$ and coclass $5$ for $p\\ge 5$.", "revisions": [ { "version": "v1", "updated": "2021-03-15T12:14:59.000Z" } ], "analyses": { "keywords": [ "non-inner automorphism conjecture", "generator finite", "consequence" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }