{ "id": "2103.08302", "version": "v1", "published": "2021-03-09T14:57:02.000Z", "updated": "2021-03-09T14:57:02.000Z", "title": "Mixed quantifier prefixes over Diophantine equations with integer variables", "authors": [ "Zhi-Wei Sun" ], "comment": "20 pages", "categories": [ "math.NT", "math.LO" ], "abstract": "In this paper we study mixed quantifiers over Diophantine equations with integer variables. For example, we prove that $\\forall^2\\exists^4$ over $\\mathbb Z$ is undecidable, that is, there is no algorithm to determine for any $P(x_1,\\ldots,x_6)\\in\\mathbb Z[x_1,\\ldots,x_6]$ whether $$\\forall x_1\\forall x_2\\exists x_3\\exists x_4\\exists x_5\\exists x_6(P(x_1,\\ldots,x_6)=0),$$ where $x_1,\\ldots,x_6$ are integer variables. We also have some similar undecidable results with universal quantifies bounded, for example, $\\exists^2\\forall^2\\exists^2$ over $\\mathbb Z$ with $\\forall$ bounded is undecidable. We conjecture that $\\forall^2\\exists^2$ over $\\mathbb Z$ is undecidable.", "revisions": [ { "version": "v1", "updated": "2021-03-09T14:57:02.000Z" } ], "analyses": { "subjects": [ "03D35", "11U05", "03D25", "11D99" ], "keywords": [ "integer variables", "mixed quantifier prefixes", "diophantine equations", "universal quantifies", "similar undecidable results" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }