{ "id": "2103.07967", "version": "v1", "published": "2021-03-14T16:32:50.000Z", "updated": "2021-03-14T16:32:50.000Z", "title": "On the least common multiple of shifted powers", "authors": [ "Carlo Sanna" ], "categories": [ "math.NT", "math.PR" ], "abstract": "Let $a \\geq 2$ be an integer. We prove that for every periodic sequence $(s_n)_{n \\geq 1}$ in $\\{-1, +1\\}$ there exists an effectively computable rational number $C_\\mathbf{s} > 0$ such that \\begin{equation*} \\log\\operatorname{lcm}(a + s_1, a^2 + s_2, \\dots, a^n + s_n) \\sim C_\\mathbf{s} \\cdot \\frac{\\log a}{\\pi^2} \\cdot n^2 , \\end{equation*} as $n \\to +\\infty$, where $\\operatorname{lcm}$ denotes the least common multiple. Furthermore, we show that if $(s_n)_{n \\geq 1}$ is a sequence of independent and uniformly distributed random variables in $\\{-1, +1\\}$ then \\begin{equation*} \\log\\operatorname{lcm}(a + s_1, a^2 + s_2, \\dots, a^n + s_n) \\sim 6 \\operatorname{Li}_2\\!\\big(\\tfrac1{2}\\big) \\cdot \\frac{\\log a}{\\pi^2} \\cdot n^2 , \\end{equation*} with probability $1 - o(1)$, as $n \\to +\\infty$, where $\\operatorname{Li}_2$ is the dilogarithm function.", "revisions": [ { "version": "v1", "updated": "2021-03-14T16:32:50.000Z" } ], "analyses": { "subjects": [ "11B39", "11B37", "11N37" ], "keywords": [ "common multiple", "shifted powers", "dilogarithm function", "periodic sequence", "effectively computable rational number" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }