{ "id": "2103.07940", "version": "v1", "published": "2021-03-14T14:36:52.000Z", "updated": "2021-03-14T14:36:52.000Z", "title": "Multiplicity of normalized solutions for a Schrödinger equation with critical growth in $\\mathbb{R}^{N}$", "authors": [ "Claudianor O. Alves", "Chao Ji", "Olimpio H. Miyagaki" ], "categories": [ "math.AP" ], "abstract": "In this paper we study the multiplicity of normalized solutions to the following nonlinear Schr\\\"{o}dinger equation with critical growth \\begin{align*} \\left\\{ \\begin{aligned} &-\\Delta u+\\lambda u=\\mu |u|^{q-2}u+f(u), \\quad \\quad \\hbox{in }\\mathbb{R}^N,\\\\ &u>0,\\,\\,\\, \\int_{\\mathbb{R}^{N}}|u|^{2}dx=a^{2}, \\end{aligned} \\right. \\end{align*} where $a,\\mu>0$, $\\lambda\\in \\mathbb{R}$ is an unknown parameter that appears as a Lagrange multiplier, $q \\in (2,2+\\frac{4}{N})$ and $f$ has an exponential critical growth when $N=2$, and $f(u)=|u|^{2^*-2}u$ when $N \\geq 3$ and $2^{*}=\\frac{2N}{N-2}$.", "revisions": [ { "version": "v1", "updated": "2021-03-14T14:36:52.000Z" } ], "analyses": { "subjects": [ "35A15", "35J10", "35B09", "35B33" ], "keywords": [ "normalized solutions", "schrödinger equation", "multiplicity", "lagrange multiplier", "exponential critical growth" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }