{ "id": "2103.07702", "version": "v1", "published": "2021-03-13T12:07:54.000Z", "updated": "2021-03-13T12:07:54.000Z", "title": "A sharp convergence theorem for the mean curvature flow in spheres I", "authors": [ "Dong Pu" ], "comment": "21 pages", "categories": [ "math.DG" ], "abstract": "In this paper, we prove a sharp convergence theorem for the mean curvature flow of arbitrary codimension in spheres which improves Baker's convergence theorem. In particular, we obtain a new differentiable sphere theorem for submanifolds in spheres.", "revisions": [ { "version": "v1", "updated": "2021-03-13T12:07:54.000Z" } ], "analyses": { "subjects": [ "53C44" ], "keywords": [ "mean curvature flow", "sharp convergence theorem", "bakers convergence theorem", "differentiable sphere theorem", "arbitrary codimension" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable" } } }