{ "id": "2103.07003", "version": "v1", "published": "2021-03-11T23:24:40.000Z", "updated": "2021-03-11T23:24:40.000Z", "title": "Conformal tori with almost non-negative scalar curvature", "authors": [ "Jianchun Chu", "Man-Chun Lee" ], "comment": "20 pages", "categories": [ "math.DG" ], "abstract": "In this work, we consider sequence of metrics with almost non-negative scalar curvature on torus. We show that if the sequence is uniformly conformal to another sequence of metrics with uniformly controlled geometry, then it converges to a flat metric in the volume preserving intrinsic flat sense, $L^{p}$ sense and the measured Gromov-Hausdorff sense.", "revisions": [ { "version": "v1", "updated": "2021-03-11T23:24:40.000Z" } ], "analyses": { "keywords": [ "non-negative scalar curvature", "conformal tori", "volume preserving intrinsic flat sense", "measured gromov-hausdorff sense" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }