{ "id": "2103.06981", "version": "v1", "published": "2021-03-11T22:07:03.000Z", "updated": "2021-03-11T22:07:03.000Z", "title": "Should I stay or should I go? Zero-size jumps in random walks for Lévy flights", "authors": [ "Gianni Pagnini", "Silvia Vitali" ], "journal": "Fract. Calc. Appl. Anal. 24(1), 137-167 (2021)", "doi": "10.1515/fca-2021-0007", "categories": [ "cond-mat.stat-mech", "math.PR" ], "abstract": "We study Markovian continuous-time random walk models for L\\'evy flights and we show an example in which the convergence to stable densities is not guaranteed when jumps follow a bi-modal power-law distribution that is equal to zero in zero. The significance of this result is two-fold: i) with regard to the probabilistic derivation of the fractional diffusion equation and also ii) with regard to the concept of site fidelity in the framework of L\\'evy-like motion for wild animals.", "revisions": [ { "version": "v1", "updated": "2021-03-11T22:07:03.000Z" } ], "analyses": { "subjects": [ "60J60", "60J25", "26A33", "60G52", "92D50" ], "keywords": [ "lévy flights", "zero-size jumps", "markovian continuous-time random walk models", "study markovian continuous-time random walk", "bi-modal power-law distribution" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }