{ "id": "2103.06903", "version": "v1", "published": "2021-03-11T19:01:14.000Z", "updated": "2021-03-11T19:01:14.000Z", "title": "Pre-canonical bases on affine Hecke algebras", "authors": [ "Nicolas Libesindky", "Leonardo Patimo", "David Plaza" ], "comment": "Comments welcome", "categories": [ "math.RT", "math.CO" ], "abstract": "For any affine Weyl group, we introduce the pre-canonical bases. They are a set of bases $\\{\\mathbf{N}^i\\}_{1\\leq i \\leq m+1} $ (where $m$ is the height of the highest root) of the spherical Hecke algebra that interpolates between the standard basis $\\mathbf{N}^1$ and the canonical basis $\\mathbf{N}^{m+1}$. The expansion of $\\mathbf{N}^{i+1}$ in terms of the $\\mathbf{N}^i$ is in many cases very simple and we conjecture that in type $A$ it is positive.", "revisions": [ { "version": "v1", "updated": "2021-03-11T19:01:14.000Z" } ], "analyses": { "keywords": [ "affine hecke algebras", "pre-canonical bases", "affine weyl group", "spherical hecke algebra", "highest root" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }