{ "id": "2103.06853", "version": "v1", "published": "2021-03-11T18:29:24.000Z", "updated": "2021-03-11T18:29:24.000Z", "title": "Expansion, divisibility and parity", "authors": [ "Harald Andrés Helfgott", "Maksym Radziwiłł" ], "comment": "98 pages, 3 figures", "categories": [ "math.NT" ], "abstract": "Let $\\mathbf{P} \\subset [H_0,H]$ be a set of primes, where $\\log H_0 \\geq (\\log H)^{2/3 + \\epsilon}$. Let $\\mathscr{L} = \\sum_{p \\in \\mathbf{P}} 1/p$. Let $N$ be such that $\\log H \\leq (\\log N)^{1/2-\\epsilon}$. We show there exists a subset $\\mathscr{X} \\subset (N, 2N]$ of density close to $1$ such that all the eigenvalues of the linear operator $$(A_{|\\mathscr{X}} f)(n) = \\sum_{\\substack{p \\in \\mathbf{P} : p | n \\\\ n, n \\pm p \\in \\mathscr{X}}} f(n \\pm p) \\; - \\sum_{\\substack{p \\in\\mathbf{P} \\\\ n, n \\pm p \\in \\mathscr{X}}} \\frac{f(n \\pm p)}{p}$$ are $O(\\sqrt{\\mathscr{L}})$. This bound is optimal up to a constant factor. In other words, we prove that a graph describing divisibility by primes is a strong local expander almost everywhere, and indeed within a constant factor of being \"locally Ramanujan\" (a.e.). Specializing to $f(n) = \\lambda(n)$ with $\\lambda(n)$ the Liouville function, and using an estimate by Matom\\\"aki, Radziwi{\\l}{\\l} and Tao on the average of $\\lambda(n)$ in short intervals, we derive that \\[\\frac{1}{\\log x} \\sum_{n\\leq x} \\frac{\\lambda(n) \\lambda(n+1)}{n} = O\\Big(\\frac{1}{\\sqrt{\\log \\log x}}\\Big),\\] improving on a result of Tao's. We also prove that $\\sum_{N