{ "id": "2103.06730", "version": "v1", "published": "2021-03-11T15:23:48.000Z", "updated": "2021-03-11T15:23:48.000Z", "title": "Normal fluctuation in quantum ergodicity for Wigner matrices", "authors": [ "Giorgio Cipolloni", "László Erdős", "Dominik Schröder" ], "comment": "24 pages", "categories": [ "math.PR", "math-ph", "math.MP" ], "abstract": "We consider the quadratic form of a general deterministic matrix on the eigenvectors of an $N\\times N$ Wigner matrix and prove that it has Gaussian fluctuation for each bulk eigenvector in the large $N$ limit. The proof is a combination of the energy method for the Dyson Brownian motion inspired by [Marcinek, Yau 2020] and our recent multi-resolvent local laws [Cipolloni, Erd\\H{o}s, Schr\\\"oder 2020].", "revisions": [ { "version": "v1", "updated": "2021-03-11T15:23:48.000Z" } ], "analyses": { "subjects": [ "60B20", "15B52" ], "keywords": [ "wigner matrix", "quantum ergodicity", "normal fluctuation", "general deterministic matrix", "dyson brownian motion" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable" } } }