{ "id": "2103.06408", "version": "v1", "published": "2021-03-11T01:46:13.000Z", "updated": "2021-03-11T01:46:13.000Z", "title": "Geometric Approaches on Persistent Homology", "authors": [ "Henry Adams", "Baris Coskunuzer" ], "categories": [ "math.AT", "cs.CG", "math.GN" ], "abstract": "We introduce several geometric notions, including thick-thin decompositions and the width of a homology class, to the theory of persistent homology. These ideas provide geometric interpretations of persistence diagrams. Indeed, we give quantitative and geometric descriptions of the \"size\" or \"persistence\" of a homology class. As a case study, we analyze the power filtration on unweighted graphs, and provide explicit bounds for the life spans of homology classes in persistence diagrams in all dimensions.", "revisions": [ { "version": "v1", "updated": "2021-03-11T01:46:13.000Z" } ], "analyses": { "keywords": [ "persistent homology", "geometric approaches", "homology class", "persistence diagrams", "geometric descriptions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }