{ "id": "2103.05830", "version": "v1", "published": "2021-03-10T02:24:04.000Z", "updated": "2021-03-10T02:24:04.000Z", "title": "Three supercongruences for Apery numbers or Franel numbers", "authors": [ "Yong Zhang" ], "categories": [ "math.NT", "math.CO" ], "abstract": "The Ap\\'ery numbers $A_n$ and the Franel numbers $f_n$ are defined by $$A_n=\\sum_{k=0}^{n}{\\binom{n+k}{2k}}^2{\\binom{2k}{k}}^2\\ \\ \\ \\ \\ {\\rm and }\\ \\ \\ \\ \\ \\ f_n=\\sum_{k=0}^{n}{\\binom{n}{k}}^3(n=0, 1, \\cdots,).$$ In this paper, we prove three supercongruences for Ap\\'ery numbers or Franel numbers conjectured by Z.-W. Sun. Let $p\\geq 5$ be a prime and let $n\\in \\mathbb{Z}^{+}$. We show that \\begin{align} \\notag \\frac{1}{n}\\bigg(\\sum_{k=0}^{pn-1}(2k+1)A_k-p\\sum_{k=0}^{n-1}(2k+1)A_k\\bigg)\\equiv0\\pmod{p^{4+3\\nu_p(n)}} \\end{align} and \\begin{align}\\notag \\frac{1}{n^3}\\bigg(\\sum_{k=0}^{pn-1}(2k+1)^3A_k-p^3\\sum_{k=0}^{n-1}(2k+1)^3A_k\\bigg)\\equiv0\\pmod{p^{6+3\\nu_p(n)}}, \\end{align} where $\\nu_p(n)$ denotes the $p$-adic order of $n$. Also, for any prime $p$ we have \\begin{align} \\notag \\frac{1}{n^3}\\bigg(\\sum_{k=0}^{pn-1}(3k+2)(-1)^kf_k-p^2\\sum_{k=0}^{n-1}(3k+2)(-1)^kf_k\\bigg)\\equiv0\\pmod{p^{3}}. \\end{align}", "revisions": [ { "version": "v1", "updated": "2021-03-10T02:24:04.000Z" } ], "analyses": { "subjects": [ "11A07", "11B65", "05A10", "11B39", "11B75" ], "keywords": [ "apery numbers", "franel numbers", "supercongruences" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }