{ "id": "2103.05742", "version": "v1", "published": "2021-03-09T22:33:05.000Z", "updated": "2021-03-09T22:33:05.000Z", "title": "Remarks on Askey-Wilson polynomials and Meixner polynomials of the second kind", "authors": [ "K. Castillo", "D. Mbouna", "J. Petronilho" ], "categories": [ "math.CA" ], "abstract": "The purpose of this note is twofold: firstly to characterize all the sequences of orthogonal polynomials $(P_n)_{n\\geq 0}$ such that $$ \\frac{\\triangle}{{\\bf \\triangle} x(s-1/2)}P_{n+1}(x(s-1/2))=c_n(\\triangle +2\\,\\mathrm{I})P_n(x(s-1/2)), $$ where $\\mathrm{I}$ is the identity operator, $x$ defines a class of lattices with, generally, nonuniform step-size, and $\\triangle f(s)=f(s+1)-f(s)$; and secondly to present, in a friendly way, a method to deal with these kind of problems.", "revisions": [ { "version": "v1", "updated": "2021-03-09T22:33:05.000Z" } ], "analyses": { "subjects": [ "42C05", "33C45" ], "keywords": [ "meixner polynomials", "askey-wilson polynomials", "second kind", "orthogonal polynomials", "identity operator" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }