{ "id": "2103.05352", "version": "v1", "published": "2021-03-09T11:01:19.000Z", "updated": "2021-03-09T11:01:19.000Z", "title": "The multiplier algebra of the noncommutative Schwartz space", "authors": [ "Tomasz Ciaƛ", "Krzysztof Piszczek" ], "journal": "Banach J. Math. Anal. 11 (2017), no. 3, 615-635", "doi": "10.1215/17358787-2017-0007", "categories": [ "math.FA" ], "abstract": "We describe the multiplier algebra of the noncommutative Schwartz space. This multiplier algebra can be seen as the largest ${}^*$-algebra of unbounded operators on a separable Hilbert space with the classical Schwartz space of rapidly decreasing functions as the domain. We show in particular that it is neither a $\\mathcal{Q}$-algebra nor $m$-convex. On the other hand, we prove that classical tools of functional analysis, for example, the closed graph theorem, the open mapping theorem or the uniform boundedness principle, are still available.", "revisions": [ { "version": "v1", "updated": "2021-03-09T11:01:19.000Z" } ], "analyses": { "subjects": [ "47L10", "46K10", "46H15", "46A13", "46A11" ], "keywords": [ "noncommutative schwartz space", "multiplier algebra", "uniform boundedness principle", "separable hilbert space", "functional analysis" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }