{ "id": "2103.05177", "version": "v1", "published": "2021-03-09T02:11:08.000Z", "updated": "2021-03-09T02:11:08.000Z", "title": "$q$-Moment Estimates for the Singular $p$-Laplace Equation and Applications", "authors": [ "Samuel Drapeau", "Liming Yin" ], "categories": [ "math.AP", "math.PR" ], "abstract": "We provide $q$-moment estimates on annuli for weak solutions of the singular $p$-Laplace equation where $p$ and $q$ are conjugates. We derive $q$-uniform integrability for some critical parameter range. As a application, we derive a mass conservation as well as a weak convergence result for a larger critical parameter range. Concerning the latter point, we further provide a rate of convergence of order $t^{q-1}$ of the solution in the $q$-Wasserstein distance.", "revisions": [ { "version": "v1", "updated": "2021-03-09T02:11:08.000Z" } ], "analyses": { "subjects": [ "35K92", "35B45", "35Q49" ], "keywords": [ "laplace equation", "moment estimates", "application", "larger critical parameter range", "weak convergence result" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }