{ "id": "2103.04284", "version": "v1", "published": "2021-03-07T07:07:04.000Z", "updated": "2021-03-07T07:07:04.000Z", "title": "On the asymptotic of Wright functions of the second kind", "authors": [ "Richard Paris", "Armando Consiglio", "Francesco Mainardi" ], "comment": "13 pages, 7 coupled figures", "journal": "Fractional Calculus and Applied Analysis, Vol 24, No 1, pp. 54--72 (2021)", "doi": "10.1515/fca-2021-0003", "categories": [ "math.CA" ], "abstract": "The asymptotic expansions of the Wright functions of the second kind, introduced by Mainardi [see Appendix F of his book {\\it Fractional Calculus and Waves in Linear Viscoelasticity}, (2010)], $$ F_\\sigma(x)=\\sum_{n=0}^\\infty \\frac{(-x)^n}{n! \\g(-n\\sigma)}~,\\quad M_\\sigma(x)=\\sum_{n=0}^\\infty \\frac{(-x)^n}{n! \\g(-n\\sigma+1-\\sigma)}\\quad(0<\\sigma<1)$$ for $x\\to\\pm\\infty$ are presented. The situation corresponding to the limit $\\sigma\\to1^-$ is considered, where $M_\\sigma(x)$ approaches the Dirac delta function $\\delta(x-1)$. Numerical results are given to demonstrate the accuracy of the expansions derived in the paper, together with graphical illustrations that reveal the transition to a Dirac delta function as $\\sigma\\to 1^-$.", "revisions": [ { "version": "v1", "updated": "2021-03-07T07:07:04.000Z" } ], "analyses": { "subjects": [ "30B10", "30E15", "33C20", "34E05", "41A60" ], "keywords": [ "second kind", "wright functions", "dirac delta function", "fractional calculus", "asymptotic expansions" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }