{ "id": "2103.03847", "version": "v1", "published": "2021-03-05T18:01:33.000Z", "updated": "2021-03-05T18:01:33.000Z", "title": "Analytic genericity of diffusing orbits in a priori unstable Hamiltonian systems", "authors": [ "Qinbo Chen", "Rafael de la Llave" ], "categories": [ "math.DS", "math-ph", "math.MP", "nlin.CD" ], "abstract": "We study the problem of instability in the following a priori unstable Hamiltonian system with a time-periodic perturbation \\[\\mathcal{H}_\\varepsilon(p,q,I,\\varphi,t)=h(I)+\\sum_{i=1}^n\\pm \\left(\\frac{1}{2}p_i^2+V_i(q_i)\\right)+\\varepsilon H_1(p,q,I,\\varphi, t), \\] where $(p,q)\\in \\mathbb{R}^n\\times\\mathbb{T}^n$, $(I,\\varphi)\\in\\mathbb{R}^d\\times\\mathbb{T}^d$ with $n, d\\geq 1$, $V_i$ are Morse potentials, and $\\varepsilon$ is a small non-zero parameter. Using geometric methods we prove that Arnold diffusion occurs for generic analytic perturbations $H_1$. Indeed, the set of admissible $H_1$ is $C^\\omega$ dense and $C^3$ open. The proof also works for arbitrarily small $V_i$. Our perturbative technique for the genericity is valid in the $C^k$ topology for all $k\\in [3,\\infty)\\cup\\{\\infty, \\omega\\}$.", "revisions": [ { "version": "v1", "updated": "2021-03-05T18:01:33.000Z" } ], "analyses": { "subjects": [ "37J40", "37J25", "70H08", "70H33" ], "keywords": [ "priori unstable hamiltonian system", "analytic genericity", "diffusing orbits", "arnold diffusion occurs", "small non-zero parameter" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }