{ "id": "2103.03828", "version": "v1", "published": "2021-03-05T17:41:46.000Z", "updated": "2021-03-05T17:41:46.000Z", "title": "Ricci curvature of Bruhat orders", "authors": [ "Viola Siconolfi" ], "comment": "32 pages", "categories": [ "math.CO" ], "abstract": "We study the Ricci curvature of the Hasse diagrams of the Bruhat order of finite irreducible Coxeter groups. For this purpose we compute the maximum degree of these graphs for types $B_n$ and $D_n$. The proof uses a new graph $\\Gamma(\\pi)$ defined for any element $\\pi$ in the corresponding group.", "revisions": [ { "version": "v1", "updated": "2021-03-05T17:41:46.000Z" } ], "analyses": { "keywords": [ "bruhat order", "ricci curvature", "finite irreducible coxeter groups", "maximum degree", "hasse diagrams" ], "note": { "typesetting": "TeX", "pages": 32, "language": "en", "license": "arXiv", "status": "editable" } } }