{ "id": "2103.02897", "version": "v1", "published": "2021-03-04T08:53:51.000Z", "updated": "2021-03-04T08:53:51.000Z", "title": "Stability of traveling waves for the Burgers-Hilbert equation", "authors": [ "Ángel Castro", "Diego Córdoba", "Fan Zheng" ], "comment": "57 pages, 1 figure", "categories": [ "math.AP" ], "abstract": "We consider smooth solutions of the Burgers-Hilbert equation that are a small perturbation $\\delta$ from a global periodic traveling wave with small amplitude $\\epsilon$. We use a modified energy method to prove the existence time of smooth solutions on a time scale of $\\frac{1}{\\epsilon\\delta}$ with $0<\\delta\\ll\\epsilon\\ll1$ and on a time scale of $\\frac{\\epsilon}{\\delta^2}$ with $0<\\delta\\ll\\epsilon^2\\ll1$. Moreover, we show that the traveling wave exists for an amplitude $\\epsilon$ in the range $(0,\\epsilon^*)$ with $\\epsilon^*\\sim 0.29$ and fails to exist for $\\epsilon>\\frac{2}{e}$.", "revisions": [ { "version": "v1", "updated": "2021-03-04T08:53:51.000Z" } ], "analyses": { "keywords": [ "burgers-hilbert equation", "smooth solutions", "time scale", "global periodic traveling wave", "existence time" ], "note": { "typesetting": "TeX", "pages": 57, "language": "en", "license": "arXiv", "status": "editable" } } }