{ "id": "2103.02246", "version": "v1", "published": "2021-03-03T08:15:46.000Z", "updated": "2021-03-03T08:15:46.000Z", "title": "Boundedness in a fully parabolic attraction-repulsion chemotaxis system with nonlinear diffusion and singular sensitivity", "authors": [ "Yutaro Chiyo", "Tomomi Yokota" ], "categories": [ "math.AP" ], "abstract": "This paper deals with the quasilinear fully parabolic attraction-repulsion chemotaxis system \\begin{align*} u_t=\\nabla \\cdot (D(u)\\nabla u) -\\nabla \\cdot (G(u)\\chi(v)\\nabla v) +\\nabla\\cdot(H(u)\\xi(w)\\nabla w), \\quad v_t=d_1\\Delta v+\\alpha u-\\beta v, \\quad w_t=d_2\\Delta w+\\gamma u-\\delta w, \\quad x \\in \\Omega,\\ t>0, \\end{align*} under homogeneous Neumann boundary conditions and initial conditions, where $\\Omega \\subset \\mathbb{R}^n$ $(n \\ge 1)$ is a bounded domain with smooth boundary, $d_1, d_2, \\alpha, \\beta, \\gamma, \\delta>0$ are constants. Also, the diffusivity $D$, the density-dependent sensitivities $G, H$ fulfill $D(s)=a_0(s+1)^{m-1}$ with $a_0>0$ and $m \\in \\mathbb{R}$; $0 \\le G(s) \\le b_0(s+1)^{q-1}$ with $b_0>0$ and $q<\\min\\{2,\\ m+1\\}$; $0 \\le H(s) \\le c_0(s+1)^{r-1}$ with $c_0>0$ and $r<\\min\\{2,\\ m+1\\}$, and the signal-dependent sensitivities $\\chi, \\xi$ satisfy $0<\\chi(s)\\le \\frac{\\chi_0}{s^{k_1}}$ with $\\chi_0>0$ and $k_1>1$; $0<\\xi(s)\\le \\frac{\\xi_0}{s^{k_2}}$ with $\\xi_0>0$ and $k_2>1$. Global existence and boundedness in the case that $w=0$ were proved by Ding (J. Math. Anal. Appl.; 2018;461;1260-1270) and Jia-Yang (J. Math. Anal. Appl.; 2019;475;139-153). However, there has been no work on the above fully parabolic attraction-repulsion chemotaxis system with nonlinear diffusion and singular sensitivity. This paper develops global existence and boundedness of classical solutions to the above system by introducing a new test function.", "revisions": [ { "version": "v1", "updated": "2021-03-03T08:15:46.000Z" } ], "analyses": { "subjects": [ "35A01", "35Q92", "92C17" ], "keywords": [ "fully parabolic attraction-repulsion chemotaxis system", "nonlinear diffusion", "singular sensitivity", "boundedness", "quasilinear fully parabolic attraction-repulsion chemotaxis" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }