{ "id": "2103.01866", "version": "v1", "published": "2021-03-02T17:02:02.000Z", "updated": "2021-03-02T17:02:02.000Z", "title": "The numerical range of some periodic tridiagonal operators is the convex hull of the numerical ranges of two finite matrices", "authors": [ "Benjamín A. Itzá-Ortiz", "Rubén A. Martínez-Avendaño", "Hiroshi Nakazato" ], "categories": [ "math.FA" ], "abstract": "In this paper we prove a conjecture stated by the first two authors in \\cite{IM} establishing the closure of the numerical range of a certain class of $n+1$-periodic tridiagonal operators as the convex hull of the numerical ranges of two tridiagonal $(n+1) \\times (n+1)$ matrices. Furthermore, when $n+1$ is odd, we show that the size of such matrices simplifies to $\\frac{n}{2}+1$.", "revisions": [ { "version": "v1", "updated": "2021-03-02T17:02:02.000Z" } ], "analyses": { "subjects": [ "47A12" ], "keywords": [ "numerical range", "periodic tridiagonal operators", "convex hull", "finite matrices", "matrices simplifies" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }