{ "id": "2103.00904", "version": "v1", "published": "2021-03-01T10:51:27.000Z", "updated": "2021-03-01T10:51:27.000Z", "title": "At least two of $ζ(5),ζ(7),\\ldots,ζ(35)$ are irrational", "authors": [ "Li Lai", "Li Zhou" ], "comment": "13 pages", "categories": [ "math.NT" ], "abstract": "Let $\\zeta(s)$ be the Riemann zeta function. We prove the statement in the title, which improves a recent result of Rivoal and Zudilin by lowering $69$ to $35$. We also prove that at least one of $\\beta(2),\\beta(4),\\ldots,\\beta(10)$ is irrational, where $\\beta(s) = L(s,\\chi_4)$ and $\\chi_4$ is the Dirichlet character with conductor $4$.", "revisions": [ { "version": "v1", "updated": "2021-03-01T10:51:27.000Z" } ], "analyses": { "subjects": [ "11J72", "11M06", "33C20" ], "keywords": [ "irrational", "riemann zeta function", "dirichlet character" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }