{ "id": "2102.13264", "version": "v1", "published": "2021-02-26T02:12:38.000Z", "updated": "2021-02-26T02:12:38.000Z", "title": "Large intersection of univoque bases of real numbers", "authors": [ "Kan Jiang", "Derong Kong", "Wenxia Li" ], "comment": "28 pages, 5 figures", "categories": [ "math.DS", "math.NT" ], "abstract": "Let $x\\in(0,1)$ and $m\\in\\mathbb N_{\\ge 2}$. We consider the set $\\Lambda(x)$ of bases $\\lambda\\in(0, 1/m]$ such that $x=\\sum_{i=1}^\\infty d_i \\lambda^i$ for some (unique) sequence $(d_i)\\in\\{0,1,\\ldots,m-1\\}^\\mathbb N$. In this paper we show that $\\Lambda(x)$ is a topological Cantor set; it has zero Lebesgue measure and full Hausdorff dimension. Furthermore, we show that the intersection $\\Lambda(x)\\cap\\Lambda(y)$ has full Hausdorff dimension for any $x, y\\in(0,1)$.", "revisions": [ { "version": "v1", "updated": "2021-02-26T02:12:38.000Z" } ], "analyses": { "keywords": [ "real numbers", "univoque bases", "large intersection", "full hausdorff dimension", "zero lebesgue measure" ], "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable" } } }