{ "id": "2102.12813", "version": "v1", "published": "2021-02-25T12:30:04.000Z", "updated": "2021-02-25T12:30:04.000Z", "title": "A lower bound theorem for $d$-polytopes with $2d+1$ vertices", "authors": [ "Guillermo Pineda-Villavicencio", "David Yost" ], "comment": "26 pages, 2 figures", "categories": [ "math.CO" ], "abstract": "We establish the exact lower bound for the number of $k$-faces of $d$-polytopes with $2d+1$ vertices, for each value of $k$, and characterise the minimisers. As a byproduct, we characterise all $d$-polytopes with $d+3$ vertices, and only one or two edges more than the minimum.", "revisions": [ { "version": "v1", "updated": "2021-02-25T12:30:04.000Z" } ], "analyses": { "subjects": [ "52B05" ], "keywords": [ "lower bound theorem", "exact lower bound", "characterise", "minimisers" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable" } } }