{ "id": "2102.12451", "version": "v1", "published": "2021-02-24T18:33:55.000Z", "updated": "2021-02-24T18:33:55.000Z", "title": "Asymptotic results for linear combinations of spacings generated by i.i.d. exponential random variables", "authors": [ "Camilla Calì", "Maria Longobardi", "Claudio Macci", "Barbara Pacchiarotti" ], "categories": [ "math.PR", "cs.IT", "math.IT", "math.ST", "stat.TH" ], "abstract": "We prove large (and moderate) deviations for a class of linear combinations of spacings generated by i.i.d. exponentially distributed random variables. We allow a wide class of coefficients which can be expressed in terms of continuous functions defined on [0, 1] which satisfy some suitable conditions. In this way we generalize some recent results by Giuliano et al. (2015) which concern the empirical cumulative entropies defined in Di Crescenzo and Longobardi (2009a).", "revisions": [ { "version": "v1", "updated": "2021-02-24T18:33:55.000Z" } ], "analyses": { "keywords": [ "exponential random variables", "linear combinations", "asymptotic results", "di crescenzo", "wide class" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }