{ "id": "2102.12212", "version": "v1", "published": "2021-02-24T11:12:00.000Z", "updated": "2021-02-24T11:12:00.000Z", "title": "Influence of an $L^p$-perturbation on Hardy-Sobolev inequality with singularity a curve", "authors": [ "El Hadji Abdoulaye Thiam", "Idowu Esther IJaodoro" ], "comment": "arXiv admin note: substantial text overlap with arXiv:1702.02202", "categories": [ "math.AP" ], "abstract": "We consider a bounded domain $\\Omega$ of $\\mathbb{R}^N$, $N\\ge3$, $h$ and $b$ continuous functions on $\\Omega$. Let $\\Gamma$ be a closed curve contained in $\\Omega$. We study existence of positive solutions $u \\in H^1_0\\left(\\Omega\\right)$ to the perturbed Hardy-Sobolev equation: $$ -\\Delta u+h u+bu^{1+\\delta}=\\rho^{-\\sigma}_\\Gamma u^{2^*_\\sigma-1} \\qquad \\textrm{ in } \\Omega, $$ where $2^*_\\sigma:=\\frac{2(N-\\sigma)}{N-2}$ is the critical Hardy-Sobolev exponent, $\\sigma\\in [0,2)$, $0< \\delta<\\frac{4}{N-2}$ and $\\rho_\\Gamma$ is the distance function to $\\Gamma$. We show that the existence of minimizers does not depend on the local geometry of $\\Gamma$ nor on the potential $h$. For $N=3$, the existence of ground-state solution may depends on the trace of the regular part of the Green function of $-\\Delta+h$ and or on $b$. This is due to the perturbative term of order ${1+\\delta}$.", "revisions": [ { "version": "v1", "updated": "2021-02-24T11:12:00.000Z" } ], "analyses": { "keywords": [ "hardy-sobolev inequality", "singularity", "perturbation", "ground-state solution", "local geometry" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }