{ "id": "2102.11989", "version": "v1", "published": "2021-02-24T00:11:20.000Z", "updated": "2021-02-24T00:11:20.000Z", "title": "Maximality of Seidel matrices and switching roots of graphs", "authors": [ "Meng-Yue Cao", "Jack H. Koolen", "Akihiro Munemasa", "Kiyoto Yoshino" ], "comment": "18 pages", "categories": [ "math.CO" ], "abstract": "In this paper, we discuss maximality of Seidel matrices with a fixed largest eigenvalue. We present a classification of maximal Seidel matrices of largest eigenvalue $3$, which gives a classification of maximal equiangular lines in a Euclidean space with angle $\\arccos1/3$. Motivated by the maximality of the exceptional root system $E_8$, we define strong maximality of a Seidel matrix, and show that every Seidel matrix achieving the absolute bound is strongly maximal.", "revisions": [ { "version": "v1", "updated": "2021-02-24T00:11:20.000Z" } ], "analyses": { "subjects": [ "05C50", "05C22" ], "keywords": [ "seidel matrix", "switching roots", "define strong maximality", "exceptional root system", "maximal equiangular lines" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable" } } }