{ "id": "2102.10714", "version": "v1", "published": "2021-02-21T23:53:17.000Z", "updated": "2021-02-21T23:53:17.000Z", "title": "A set of $q$-coherent states for the Rogers-Szegö oscillator", "authors": [ "Othmane El Moize", "Zouhaïr Mouayn" ], "categories": [ "math-ph", "math.MP" ], "abstract": "We discuss a model of a $q$-harmonic oscillator based on Rogers-Szeg\\\"o functions. We combine these functions with a class of $q$-analogs of complex Hermite polynomials to construct a new set of coherent states depending on a nonnegative integer parameter $m$. Our construction leads to a new $q$-deformation of the $m$-true-polyanalytic Bargmann transform whose range defines a generalization of the Arik-Coon space. We also give an explicit formula for the reproducing kernel of this space. The obtained results may be exploited to define a $q$-deformation of the Ginibre-$m$-type process on the complex plane.", "revisions": [ { "version": "v1", "updated": "2021-02-21T23:53:17.000Z" } ], "analyses": { "keywords": [ "coherent states", "complex hermite polynomials", "true-polyanalytic bargmann transform", "harmonic oscillator", "explicit formula" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }