{ "id": "2102.10325", "version": "v1", "published": "2021-02-20T12:28:20.000Z", "updated": "2021-02-20T12:28:20.000Z", "title": "Immediate renormalization of complex polynomials", "authors": [ "Alexander Blokh", "Lex Oversteegen", "Vladlen Timorin" ], "comment": "34 pages, 2 figures", "categories": [ "math.DS" ], "abstract": "A cubic polynomial $P$ with a non-repelling fixed point $b$ is said to be \\emph{immediately renormalizable} if there exists a (connected) quadratic-like invariant filled Julia set $K^*$ such that $b\\in K^*$. In that case exactly one critical point of $P$ does not belong to $K^*$. We show that if, in addition, the Julia set of $P$ has no (pre)periodic cutpoints then this critical point is recurrent.", "revisions": [ { "version": "v1", "updated": "2021-02-20T12:28:20.000Z" } ], "analyses": { "subjects": [ "37F20", "37C25", "37F10", "37F50" ], "keywords": [ "complex polynomials", "immediate renormalization", "quadratic-like invariant filled julia set", "critical point", "cubic polynomial" ], "note": { "typesetting": "TeX", "pages": 34, "language": "en", "license": "arXiv", "status": "editable" } } }