{ "id": "2102.10206", "version": "v1", "published": "2021-02-19T23:30:50.000Z", "updated": "2021-02-19T23:30:50.000Z", "title": "Continuity of the gradient of the fractional maximal operator on $W^{1,1}(\\mathbb{R}^d)$", "authors": [ "David Beltran", "Cristian González-Riquelme", "José Madrid", "Julian Weigt" ], "comment": "12 pages, 1 figure", "categories": [ "math.CA" ], "abstract": "We establish that the map $f\\mapsto |\\nabla \\mathcal{M}_{\\alpha}f|$ is continuous from $W^{1,1}(\\mathbb{R}^d)$ to $L^{q}(\\mathbb{R}^d)$, where $\\alpha\\in (0,d)$, $q=\\frac{d}{d-\\alpha}$ and $\\mathcal{M}_{\\alpha}$ denotes either the centered or non-centered fractional Hardy--Littlewood maximal operator. In particular, we cover the cases $d >1$ and $\\alpha \\in (0,1)$ in full generality, for which results were only known for radial functions.", "revisions": [ { "version": "v1", "updated": "2021-02-19T23:30:50.000Z" } ], "analyses": { "subjects": [ "42B25", "46E35" ], "keywords": [ "fractional maximal operator", "continuity", "non-centered fractional hardy-littlewood maximal operator", "full generality", "radial functions" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }