{ "id": "2102.10070", "version": "v1", "published": "2021-02-19T18:01:15.000Z", "updated": "2021-02-19T18:01:15.000Z", "title": "Sharp upper bounds on the minimal number of elements required to generate a transitive permutation group", "authors": [ "Gareth Tracey" ], "comment": "27 pages", "categories": [ "math.GR" ], "abstract": "The purpose of this paper is to prove that if $G$ is a transitive permutation group of degree $n\\geq 2$, then $G$ can be generated by $\\lfloor cn/\\sqrt{\\log{n}}\\rfloor$ elements, where $c:=\\sqrt{3}/2$. Owing to the transitive group $D_8\\circ D_8$ of degree $8$, this upper bound is best possible. Our new result improves a 2018 paper by the author, and makes use of the recent classification of transitive groups of degree $48$.", "revisions": [ { "version": "v1", "updated": "2021-02-19T18:01:15.000Z" } ], "analyses": { "subjects": [ "20B05", "20D05" ], "keywords": [ "transitive permutation group", "sharp upper bounds", "minimal number", "transitive group", "classification" ], "note": { "typesetting": "TeX", "pages": 27, "language": "en", "license": "arXiv", "status": "editable" } } }