{ "id": "2102.09175", "version": "v1", "published": "2021-02-18T06:31:26.000Z", "updated": "2021-02-18T06:31:26.000Z", "title": "Connection problem for an extension of $q$-hypergeometric systems", "authors": [ "Takahiko Nobukawa" ], "comment": "25 pages", "categories": [ "math.CA", "math-ph", "math.MP" ], "abstract": "We solve the connection problem of a certain system of linear $q$-difference equations recently introduced by K. Park. The result contains the connection formulas of the $q$-Lauricella hypergeometric function $\\varphi_{D}$ and those of the $q$-generalized hypergeometric function ${}_{N+1}\\varphi_{N}$ as special cases. Our result gives a simultaneous extension of them.", "revisions": [ { "version": "v1", "updated": "2021-02-18T06:31:26.000Z" } ], "analyses": { "subjects": [ "33D70", "39A13" ], "keywords": [ "connection problem", "hypergeometric systems", "lauricella hypergeometric function", "difference equations", "connection formulas" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable" } } }