{ "id": "2102.08714", "version": "v1", "published": "2021-02-17T11:56:57.000Z", "updated": "2021-02-17T11:56:57.000Z", "title": "Some geometric properties of nonparametric $μ$-surfaces in $\\mathbb{R}^3$", "authors": [ "Michael Bildhauer", "Matin Fuchs" ], "categories": [ "math.AP" ], "abstract": "Smooth solutions of the equation \\[ \\rm{div}\\, \\Bigg\\{ \\frac{g'\\big(|\\nabla u|\\big)}{|\\nabla u|} \\nabla u \\Bigg\\} = 0 \\] are considered generating nonparametric $\\mu$-surfaces in $\\mathbb{R}^3$, whenever $g$ is a function of linear growth satisfying in addition \\[ \\int_0^\\infty s g''(s) d s < \\infty \\, . \\] Particular examples are $\\mu$-elliptic energy densities $g$ with exponent $\\mu > 2$ (see [1]) and the minimal surfaces belong to the class of $3$-surfaces. Generalizing the minimal surface case we prove the closedness of a suitable differential form $\\hat{N} \\wedge d X$. As a corollary we find an asymptotic conformal parametrization generated by this differential form.", "revisions": [ { "version": "v1", "updated": "2021-02-17T11:56:57.000Z" } ], "analyses": { "subjects": [ "49Q05", "53A10", "53C42", "58E12" ], "keywords": [ "geometric properties", "nonparametric", "asymptotic conformal parametrization", "minimal surface case", "elliptic energy densities" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }