{ "id": "2102.08662", "version": "v1", "published": "2021-02-17T10:00:09.000Z", "updated": "2021-02-17T10:00:09.000Z", "title": "Semiclassical parametrix for the Maxwell equation and applications to the electromagnetic transmission eigenvalues", "authors": [ "Georgi Vodev" ], "categories": [ "math.AP", "math-ph", "math.MP" ], "abstract": "We introduce an analog of the Dirichlet-to-Neumann map for the Maxwell equation in a bounded domain. We show that it can be approximated by a pseudodifferential operator on the boundary with a matrix-valued symbol and we compute the principal symbol. As a consequence, we obtain a parabolic region free of the transmission eigenvalues associated to the Maxwell equation.", "revisions": [ { "version": "v1", "updated": "2021-02-17T10:00:09.000Z" } ], "analyses": { "keywords": [ "maxwell equation", "electromagnetic transmission eigenvalues", "semiclassical parametrix", "applications", "parabolic region free" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }