{ "id": "2102.08448", "version": "v1", "published": "2021-02-16T20:57:16.000Z", "updated": "2021-02-16T20:57:16.000Z", "title": "Simplicity of Lyapunov spectrum for geodesic flows in negative curvature", "authors": [ "Daniel Mitsutani" ], "comment": "32 pages, 1 figure; comments welcome", "categories": [ "math.DS", "math.DG" ], "abstract": "We study the Lyapunov spectrum of the geodesic flow of negatively curved 1/4-pinched Riemannian manifolds. We show that the space of metrics with simple Lyapunov spectrum with respect to the equilibrium state of any H\\\"older continuous potential is $C^k$ open and dense. The proof relies on a symbolic coding of the flow to apply the simplicity criterion of Avila and Viana in [AV07] and on perturbational results for $k$-jets of geodesic flows established in [KT72].", "revisions": [ { "version": "v1", "updated": "2021-02-16T20:57:16.000Z" } ], "analyses": { "subjects": [ "37J39" ], "keywords": [ "geodesic flow", "negative curvature", "simple lyapunov spectrum", "riemannian manifolds", "equilibrium state" ], "note": { "typesetting": "TeX", "pages": 32, "language": "en", "license": "arXiv", "status": "editable" } } }