{ "id": "2102.06152", "version": "v1", "published": "2021-02-11T17:51:54.000Z", "updated": "2021-02-11T17:51:54.000Z", "title": "An anisotropic regularity condition for the 3D incompressible Navier-Stokes equations for the entire exponent range", "authors": [ "Igor Kukavica", "Wojciech S. Ożański" ], "comment": "9 pages", "categories": [ "math.AP" ], "abstract": "We show that a suitable weak solution to the incompressible Navier-Stokes equations on ${\\mathbb{R}^3\\times(-1,1)}$ is regular on $\\mathbb{R}^3\\times(0,1]$ if $\\partial_3 u $ belongs to a Morrey space $M^{2p/(2p-3),\\alpha } ((-1,0);L^p (\\mathbb{R}^3 ))$ for any $\\alpha >1$ and $p\\in (3/2,\\infty)$. For each $\\alpha >1$ the Morrey space is, up to a logarithm, critical with respect to the scaling of the equations, and contains all spaces $L^q ((-1,0);L^p (\\mathbb{R}^3 ))$ that are subcritical, that is for which $2/q+3/p<1$.", "revisions": [ { "version": "v1", "updated": "2021-02-11T17:51:54.000Z" } ], "analyses": { "keywords": [ "3d incompressible navier-stokes equations", "anisotropic regularity condition", "entire exponent range", "morrey space", "weak solution" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }