{ "id": "2102.06104", "version": "v1", "published": "2021-02-11T16:37:18.000Z", "updated": "2021-02-11T16:37:18.000Z", "title": "Abelian maps, brace blocks, and solutions to the {Y}ang-{B}axter equation", "authors": [ "Alan Koch" ], "comment": "15 pages", "categories": [ "math.GR", "math-ph", "math.MP" ], "abstract": "Let $G$ be a finite nonabelian group. We show how an endomorphism of $G$ with abelian image gives rise to a family of binary operations $\\{\\circ_n: n\\in \\mathbb Z^{\\ge 0}\\}$ on $G$ such that $(G,\\circ_m,\\circ_n)$ is a skew left brace for all $m,n\\ge 0$. A brace block gives rise to a number of non-degenerate set-theoretic solutions to the Yang-Baxter equation. We give examples showing that the number of solutions obtained can be arbitrarily large.", "revisions": [ { "version": "v1", "updated": "2021-02-11T16:37:18.000Z" } ], "analyses": { "subjects": [ "16T25", "20N99" ], "keywords": [ "brace block", "abelian maps", "non-degenerate set-theoretic solutions", "finite nonabelian group", "skew left brace" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }