{ "id": "2102.05841", "version": "v1", "published": "2021-02-11T04:22:32.000Z", "updated": "2021-02-11T04:22:32.000Z", "title": "J-Stability in non-archimedean dynamics", "authors": [ "Robert L. Benedetto", "Junghun Lee" ], "comment": "24 pages", "categories": [ "math.DS", "math.NT" ], "abstract": "Let $C_v$ be a complete, algebraically closed non-archimedean field, and let $f \\in C_v(z)$ be a rational function of degree $d \\geq 2$. If $f$ satisfies a bounded contraction condition on its Julia set, we prove that small perturbations of $f$ have dynamics conjugate to those of $f$ on their Julia sets.", "revisions": [ { "version": "v1", "updated": "2021-02-11T04:22:32.000Z" } ], "analyses": { "subjects": [ "37P40", "37P45", "37P50", "11S82", "37P05" ], "keywords": [ "non-archimedean dynamics", "julia set", "j-stability", "rational function", "bounded contraction condition" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable" } } }