{ "id": "2102.05175", "version": "v1", "published": "2021-02-09T23:07:06.000Z", "updated": "2021-02-09T23:07:06.000Z", "title": "Transition space for the continuity of the Lyapunov exponent of quasiperiodic Schrödinger cocycles", "authors": [ "Lingrui Ge", "Yiqian Wang", "Jiangong You", "Xin Zhao" ], "comment": "27 pages", "categories": [ "math.DS", "math-ph", "math.MP", "math.SP" ], "abstract": "We construct discontinuous point of the Lyapunov exponent of quasiperiodic Schr\\\"odinger cocycles in the Gevrey space $G^{s}$ with $s>2$. In contrast, the Lyapunov exponent has been proved to be continuous in the Gevrey space $G^{s}$ with $s<2$ \\cite{klein,cgyz}. This shows that $G^2$ is the transition space for the continuity of the Lyapunov exponent.", "revisions": [ { "version": "v1", "updated": "2021-02-09T23:07:06.000Z" } ], "analyses": { "keywords": [ "lyapunov exponent", "quasiperiodic schrödinger cocycles", "transition space", "continuity" ], "note": { "typesetting": "TeX", "pages": 27, "language": "en", "license": "arXiv", "status": "editable" } } }