{ "id": "2102.04914", "version": "v1", "published": "2021-02-09T16:10:06.000Z", "updated": "2021-02-09T16:10:06.000Z", "title": "Caustic-Free Regions for Billiards in the Hyperbolic Plane", "authors": [ "Dan Itzhak Florentin", "Yaron Ostrover", "Daniel Rosen" ], "comment": "15 pages, 10 figures", "categories": [ "math.DS", "math.MG" ], "abstract": "In this note we study caustic-free regions for convex billiard tables in the hyperbolic plane. In particular, following a result by Gutkin and Katok in the Euclidean case, we estimate the size of such regions in terms of the geometry of the billiard table. Moreover, we extend to the setting of the hyperbolic plane a theorem due to Hubacher which shows that no caustics exist near the boundary of a convex billiard table whose curvature is discontinuous.", "revisions": [ { "version": "v1", "updated": "2021-02-09T16:10:06.000Z" } ], "analyses": { "subjects": [ "52A10", "52A55", "37E40" ], "keywords": [ "hyperbolic plane", "convex billiard table", "study caustic-free regions", "euclidean case" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }