{ "id": "2102.04748", "version": "v1", "published": "2021-02-09T10:34:13.000Z", "updated": "2021-02-09T10:34:13.000Z", "title": "New estimates for the maximal functions and applications", "authors": [ "Oscar Domínguez", "Sergey Tikhonov" ], "comment": "47 pages", "categories": [ "math.FA" ], "abstract": "In this paper we study sharp pointwise inequalities for maximal operators. In particular, we strengthen DeVore's inequality for the moduli of smoothness and a logarithmic variant of Bennett--DeVore--Sharpley's inequality for rearrangements. As a consequence, we improve the classical Stein--Zygmund embedding deriving $\\dot{B}^{d/p}_\\infty L_{p,\\infty}(\\mathbb{R}^d) \\hookrightarrow \\text{BMO}(\\mathbb{R}^d)$ for $1 < p < \\infty$. Moreover, these results are also applied to establish new Fefferman--Stein inequalities, Calder\\'on--Scott type inequalities, and extrapolation estimates. Our approach is based on the limiting interpolation techniques.", "revisions": [ { "version": "v1", "updated": "2021-02-09T10:34:13.000Z" } ], "analyses": { "subjects": [ "46E35", "42B35", "26A15", "46E30", "46B70" ], "keywords": [ "maximal functions", "applications", "study sharp pointwise inequalities", "calderon-scott type inequalities", "strengthen devores inequality" ], "note": { "typesetting": "TeX", "pages": 47, "language": "en", "license": "arXiv", "status": "editable" } } }