{ "id": "2102.04663", "version": "v1", "published": "2021-02-09T06:12:24.000Z", "updated": "2021-02-09T06:12:24.000Z", "title": "Counting Zeros of Dedekind Zeta Functions", "authors": [ "Elchin Hasanalizade", "Quanli Shen", "Peng-Jie Wong" ], "categories": [ "math.NT" ], "abstract": "Given a number field $K$ of degree $n_K$ and with absolute discriminant $d_K$, we obtain an explicit bound for the number $N_K(T)$ of non-trivial zeros, with height at most $T$, of the Dedekind zeta function $\\zeta_K(s)$ of $K$. More precisely, we show that $$ \\Big| N_K (T) - \\frac{T}{\\pi} \\log \\Big( d_K \\Big( \\frac{T}{2\\pi e}\\Big)^{n_K}\\Big)\\Big| \\le 0.228 (\\log d_K + n_K \\log T) + 23.108 n_K + 4.520, $$ which improves previous results of Kadiri-Ng and Trudgian. The improvement is based on ideas from the recent work of Bennett \\emph{et al.} on counting zeros of Dirichlet $L$-functions.", "revisions": [ { "version": "v1", "updated": "2021-02-09T06:12:24.000Z" } ], "analyses": { "keywords": [ "dedekind zeta function", "counting zeros", "explicit bound", "non-trivial zeros", "number field" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }