{ "id": "2102.04111", "version": "v1", "published": "2021-02-08T10:27:21.000Z", "updated": "2021-02-08T10:27:21.000Z", "title": "The Newton Polyhedron and positivity of ${}_2F_3$ hypergeometric functions", "authors": [ "Yong-Kum Cho", "Seok-Young Chung" ], "comment": "The paper is accepted to ", "journal": "Constructive Approximation, 2021", "categories": [ "math.CA" ], "abstract": "As for the ${}_2F_3$ hypergeometric function of the form \\begin{equation*} {}_2F_3\\left[\\begin{array}{c} a_1, a_2\\\\ b_1, b_2, b_3\\end{array}\\biggr| -x^2\\right]\\qquad(x>0), \\end{equation*} where all of parameters are assumed to be positive, we give sufficient conditions on $(b_1, b_2, b_3)$ for its positivity in terms of Newton polyhedra with vertices consisting of permutations of $\\,(a_2, a_1+1/2, 2a_1)\\,$ or $\\,(a_1, a_2+1/2, 2a_2).$ As an application, we obtain an extensive validity region of $(\\alpha, \\lambda, \\mu)$ for the inequality \\begin{equation*} \\int_0^x (x-t)^{\\lambda}\\, t^{\\mu} J_\\alpha(t)\\, dt \\ge 0\\qquad(x>0). \\end{equation*}", "revisions": [ { "version": "v1", "updated": "2021-02-08T10:27:21.000Z" } ], "analyses": { "subjects": [ "26D15", "33C10", "33C20" ], "keywords": [ "hypergeometric function", "newton polyhedron", "positivity", "sufficient conditions", "extensive validity region" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }