{ "id": "2102.04089", "version": "v1", "published": "2021-02-08T09:51:49.000Z", "updated": "2021-02-08T09:51:49.000Z", "title": "A generalization of Duflo's conjecture", "authors": [ "Hongfeng Zhang" ], "comment": "43 pages", "categories": [ "math.RT" ], "abstract": "In this article, we generalize Duflo's conjecture to understand the branching laws of non-discrete series. We give a unified description on the geometric side about the restriction of an irreducible unitary representation $\\pi$ of $\\mathrm{GL}_n(k)$, $k=\\mathbb{R}$ or $\\mathbb{C}$, to the mirabolic subgroup, where $\\pi$ is attached to a certain kind of coadjoint orbit.", "revisions": [ { "version": "v1", "updated": "2021-02-08T09:51:49.000Z" } ], "analyses": { "subjects": [ "22E46" ], "keywords": [ "generalization", "non-discrete series", "generalize duflos conjecture", "geometric side", "irreducible unitary representation" ], "note": { "typesetting": "TeX", "pages": 43, "language": "en", "license": "arXiv", "status": "editable" } } }