{ "id": "2102.04038", "version": "v1", "published": "2021-02-08T07:33:59.000Z", "updated": "2021-02-08T07:33:59.000Z", "title": "Prime-representing functions and Hausdorff dimension", "authors": [ "Kota Saito" ], "comment": "15 pages", "categories": [ "math.NT", "math.MG" ], "abstract": "In 2010, Matom\\\"{a}ki investigated the set of $A>1$ such that the integer part of $ A^{c^k} $ is a prime number for every $k\\in \\mathbb{N}$, where $c\\geq 2$ is any fixed real number. She proved that the set is uncountable, nowhere dense, and has Lebesgue measure $0$. In this article, we show that the set has Hausdorff dimension $1$.", "revisions": [ { "version": "v1", "updated": "2021-02-08T07:33:59.000Z" } ], "analyses": { "subjects": [ "11K55", "11A41" ], "keywords": [ "hausdorff dimension", "prime-representing functions", "prime number", "lebesgue measure", "integer part" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }