{ "id": "2102.03421", "version": "v1", "published": "2021-02-05T21:10:02.000Z", "updated": "2021-02-05T21:10:02.000Z", "title": "Arithmetic local constants for abelian varieties with extra endomorphisms", "authors": [ "Sunil Chetty" ], "journal": "Funct. Approx. Comment. Math., Volume 55, Number 1 (2016), 59-81", "doi": "10.7169/facm/2016.55.1.5", "categories": [ "math.NT" ], "abstract": "This work generalizes the theory of arithmetic local constants, introduced by Mazur and Rubin, to better address abelian varieties with a larger endomorphism ring than $\\mathbb{Z}$. We then study the growth of the $p^\\infty$-Selmer rank of our abelian variety, and we address the problem of extending the results of Mazur and Rubin to dihedral towers $k\\subset K\\subset F$ in which $[F:K]$ is not a $p$-power extension.", "revisions": [ { "version": "v1", "updated": "2021-02-05T21:10:02.000Z" } ], "analyses": { "subjects": [ "11G05", "11G10", "11G07", "11G15" ], "keywords": [ "arithmetic local constants", "abelian variety", "extra endomorphisms", "better address abelian varieties", "power extension" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }