{ "id": "2102.03153", "version": "v1", "published": "2021-02-05T13:08:09.000Z", "updated": "2021-02-05T13:08:09.000Z", "title": "Constant mean curvature surfaces based on fundamental quadrilaterals", "authors": [ "Alexander I. Bobenko", "Sebastian Heller", "Nicholas Schmitt" ], "comment": "22 pages, 30 figures", "categories": [ "math.DG" ], "abstract": "We describe the construction of CMC surfaces with symmetries in $\\mathbb S^3$ and $\\mathbb R^3$ using a CMC quadrilateral in a fundamental tetrahedron of a tessellation of the space. The fundamental piece is constructed by the generalized Weierstrass representation using a geometric flow on the space of potentials.", "revisions": [ { "version": "v1", "updated": "2021-02-05T13:08:09.000Z" } ], "analyses": { "keywords": [ "constant mean curvature surfaces", "fundamental quadrilaterals", "cmc surfaces", "cmc quadrilateral", "geometric flow" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable" } } }