{ "id": "2102.03001", "version": "v1", "published": "2021-02-05T05:20:13.000Z", "updated": "2021-02-05T05:20:13.000Z", "title": "Normalized solutions for a Schrödinger equation with critical growth in $\\mathbb{R}^{N}$", "authors": [ "Claudianor O. Alves", "Chao Ji", "Olimpio H. Miyagaki" ], "categories": [ "math.AP" ], "abstract": "In this paper we study the existence of normalized solutions to the following nonlinear Schr\\\"{o}dinger equation with critical growth \\begin{align*} \\left\\{ \\begin{aligned} &-\\Delta u+\\lambda u=f(u), \\quad \\quad \\hbox{in }\\mathbb{R}^N,\\\\ &u>0,\\,\\,\\, \\int_{\\mathbb{R}^{N}}|u|^{2}dx=a^{2}, \\end{aligned} \\right. \\end{align*} where $a>0$, $\\lambda<0$ and $f$ has an exponential critical growth when $N=2$, and $f(t)=\\mu |u|^{q-2}u+|u|^{2^*-2}u$ with $q \\in (2+\\frac{4}{N},2^*)$, $\\mu>0$ and $2^*=\\frac{2N}{N-2}$ when $N \\geq 3$. Our main results complement some recent results for $N \\geq 3$ and it is totally new for $N=2$.", "revisions": [ { "version": "v1", "updated": "2021-02-05T05:20:13.000Z" } ], "analyses": { "subjects": [ "35A15", "35J10", "35B09", "35B33" ], "keywords": [ "normalized solutions", "schrödinger equation", "main results complement", "exponential critical growth" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }